Things You Need to Know about Data Trends in 2019

203 billion. That’s what IDC projects global revenue from big data will reach in 2020. By 2025, we’ll produce 180 Zettabytes of data annually, much of it from IoT. And next year, there’ll be 440,000 big-data related jobs in the U.S. alone, with only 300,000 skilled workers to fill them.In the midst of this cosmic growth, technology leaders need to know: What are the trends to pay attention to now and in the coming year? Let’s take a look: 1. Machine learningLeveraging big data to better understand the inputs and context of historical data—and subsequently inform the analysis of more real-time data—will empower businesses to make decisions pre-event rather than post-event.Machine learning won’t be replacing the jobs of data scientists (at least not this year). In a 2017 report, Gartner predicted that over 40% of data science tasks will be automated by 2020. 2. Log analyticsThe ability to leverage real-time and/or streaming data is fundamentally dependent on the quality of the data pipeline. Businesses need an acute and holistic monitoring and alerting infrastructure that handles data security and integrity throughout their systems. 3. Specialization of job rolesAs digital transformation turns nearly every organization into a technology organization, the ubiquity and increasing importance of data means that companies will need to adapt in two broad, overarching ways:- By implementing tools specific to a discrete stage of the analytics solution delivery.- By hiring highly skilled data experts versed in those stages and tools.With specialization comes increased demand: IBM projects jobs for data and analytics professionals will grow from 364,000 openings to 2,720,000 by 2020. 4. Increased valuation of data assetsDecreasing expenses through operational efficiency is the top data initiative underway among Fortune 1000 leadership, according to a recent survey by NewVantage partners. The growth of data streaming platforms like Kafka and Amazon Kinesis will allow organizations to surface analytics even faster. The ability to tap into more real-time data means organizations can assign monetary value to data collection and utilization, a significant financial evolution for business today. 5. Built-in data prep and governance in analytics toolsBusiness intelligence (BI) and analytics tools such as Tableau continue to enhance features like data certification that allow skilled practitioners to quickly achieve desired business deliverables, including providing layers of abstraction on top of previously-complex extract, transform, and load (ETL) and data management processes. The result: more accessible metadata and documentation for non-technical business users, who can then tackle analytics tasks on their own.In other words, 2018 will be a pivotal year in the rise of analytics-as-a-service. 6. Elasticity and fluidity in analytics infrastructureThe ability to dynamically evaluate the load on a server or node, and then leverage cloud storage to mitigate performance issues will deliver invaluable advantage.  7. Data humanismData humanism is the process of fleshing out the unique and personal nature of data, mostly through data visualization. Turning big data into small data is a primary goal. Embracing the complexity and nuance of large datasets will allow us to humanize the data we collect and re-focus our efforts on data quality, rather than quantity.The evidence is clear: We’re in the midst of a data boom, driven by the increased ability to gather, store and analyze data with a seemingly endless reduction in the cost to do so. Leaders ready to take advantage of these trends and harness the power of data will be the ones who create the future in 2019 and beyond.

Related Posts

Privacy Preferences
When you visit our website, it may store information through your browser from specific services, usually in form of cookies. Here you can change your privacy preferences. Please note that blocking some types of cookies may impact your experience on our website and the services we offer.